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Abstract

Model equations for the shape of the Eiffel Tower are investigated. One model purported to be based on Eiffel’s
does not give a tower with the correct curvature. A second popular modelnot connected with Eiffel’swritings provides a fair
approximation to the tower’s skyline profile of 29 contiguous panels. Reported here is a third model derived from
concern about wind loads on the tower, as documented in his communication to the French Civil Engineering So
30 March 1885. The result is a nonlinear, integro-differential equation which is solved to yield an exponential tower p
is further verified that, as Eiffel wrote, “in reality the curve exterior of the tower reproduces, at a determined scale, the s
curve of the moments produced by the wind”. An analysis of the actual tower profile shows that it is composed of two p
continuous exponentials with different growth rates. This is explained by specific safety factors for wind loading that E
Company incorporated in the design of the free-standing tower.To cite this article: P. Weidman, I. Pinelis, C. R. Mecanique
332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Mise en équations du profil de la Tour Eiffel : rétrospective et nouveautés.La mise en équation de la forme de la To
Eiffel est ici étudiée. Un model supposé être basé sur les écrits d’Eiffel abouti à une tour possédant une courbure i
Il existe également un second model populaire, non déduit des notes d’Eiffel, produisant une bonne approximation d
de la tour en vingt-neuf panneaux successifs. Ici est présenté un troisième model dérivé des préoccupations d’Eiffel c
les effets du vent décrits dans sa communication a la Société Française des Ingénieurs Civils datée du 30 mars 1
résulte une équation non-linéaire intégro-différentielle dont la solution produit un profil de tour de type exponentiel.
par ailleurs vérifié, comme Eiffel l’a noté, « en réalité la courbeextérieure de la tour reproduit, à une échelle déterminée,
courbe même des moments fléchissant dus au vent ». Une analyse du profil actuel de la tour montre qu’il est compos
parties continues exponentielles à taux d’accroissement différents. Cela s’explique par des facteurs de sûreté spécifi
la charge du vent, inclus par Eiffel & Compagnie dans le plans d’une tour auto supportée.Pour citer cet article : P. Weidman,
I. Pinelis, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

It is well known that the Eiffel Tower was not designedaccording to a mathematical formula. It was desig
using graphical methods to construct a tower of sufficient strength to support its immense weight and e
results garnered from past experience to account for wind loading. This notwithstanding, the Eiffel Tower is
by many to be of exponential form.

The present investigation into model equations for the shape of the Eiffel Tower commenced in No
2001 when the lead author received a complimentary copy of the second edition ofAdvanced Engineerin
Mathematics[1]. On its cover are photographs of various stages of construction of the Eiffel Tower an
frontispiece presents a nonlinear integral equation for the tower shape, advertised as the ‘Eiffel Tower Equation
a website [2] run by Christophe and Geraldine Chouard. The equation had not been solved in closed form
Chouards offered a challenge to find the solution “written as acombination of usual functions” and report it to the
Although we found one solution, it does not conform to the shape of the Eiffel Tower. Following our failure t
any solution of the ‘Eiffel Tower Equation’ having proper tower curvature, we questioned whether the assum
on which the equation was formulated could be attributed to Eiffel, as claimed. Our expanded study lead to
popular model, but neither of the two models could be traced tothe writings of Eiffel. Eventually, after translatin
some of Gustave Eiffel’s orginal documents, we learned the basis for tower construction and develope
equation for the skyline profile, one that embraces Eiffel’s deep concern for the effects of wind loading on
tower.

This article documents our discovery with an historical perspective. Circumstances leading to the propositio
erecting a 300 m tower for the 1889 Exposition in Paris is given in Section 2 along with pertinent facts about
tower. In Section 3 two existing model equations, one linear and the other nonlinear, are reviewed and a
In Section 4 an integro-differential equation is derived, based on a communication by Eiffel to the French Soc
of Civil Engineers on 30 March 1885. The only relevant solution is exponential, justifying the lore promu
by both lay and scientific persons. The work in the Abstract and Sections 1–4 is due to P.D. Weidman w
theorem in the Appendix is due to I. Pinelis.

2. Prelude and facts

In a notice published in the government’sJournal Officielof 2 May 1886, French architects and engineers w
invited to bid on plans to construct semi-permanent buildings for the 1889 exposition and, in particular, to consi
“the possibility of erecting on the Champ de Mars an iron tower with a base of 125 meters square and 30
high”, this height being the nearest round metric equivalent to 1000 feet. Ultimately, Gustave Eiffel’s proposal f
a tower of wrought iron weighing approximately 7000 tons, costing $1.6 million, was selected and the contra
was signed on 18 January 1887. Eiffel & Company had already conceived and advertised the idea of con
a 300 meter tower beginning with an original conceptual drawing by the company’s engineers Emile Nougu
Maurice Koechlin in 1884 shown in Fig. 1(a); for comparison beside the tower are sketches of the Notre Da
Statue of Liberty, the Arc de Triomphe, three columns the height of the column in Place Vendôme, and a s
apartment building. The shape and structure underwent numerous modifications by Gustave Eiffel and
Stéphane Sauvestre toward the final design shown in Fig. 1(b). In particular, the 40 panels exhibited in F
were pared down to the 29 panels seen in Fig. 1(b). The construction lasting two years, two months and
was completed on 31 March1889 – only a month before theMay 5 opening of the Exposition.
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Fig. 1. (a) Pylon 300 meters high for the city of Paris, 1889, a preliminary concept by Mssrs. E. Nouguier and M. Koechlin, 6 June 1884; a
(b) final design of the 300 meter tower sketched by G. Eiffel given as an attachment to the contract signed on 18 January 1887. T
Heinle [3].

Fig. 1. (a) Pylone haut de 300 mètres pour la Ville de Paris, conception préliminaire par Messieurs E. Nougier et M. Koechlin datant de 6
1884 ; (b) Le projet final de la tour de 300 mètres dessiné par G. Eiffel et donné en pièce jointe au contrat signé le 18 janvier 1887. Pris
Heinle [3].

Table 1
Panel heights, inclinations, and profile coordinates derived therefrom

Tableau 1
Les hauteurs et inclinaisons des 29 panneaux, ainsi que leurs côtes

Panel Angle h (m) x (m) w (m) Panel Angle h (m) x (m) w (m)

29 90◦00′00′′ 11.280 0.000 5.000 14 84◦06′24′′ 10.600 128.076 11.786
28 87◦12′31′′ 5.833 11.280 5.000 13 82◦25′29′′ 10.700 138.676 12.880
27 87◦12′31′′ 6.165 17.113 5.284 12 82◦25′29′′ 11.300 149.376 14.303
26 87◦12′31′′ 6.517 23.278 5.585 11 77◦07′52′′ 4.900 160.676 15.806
25 87◦12′31′′ 6.888 29.795 5.903 10 77◦07′52′′ 10.000 165.576 16.925
24 87◦12′31′′ 7.280 36.683 6.239 9 76◦54′10′′ 10.200 175.576 19.210
23 87◦12′31′′ 7.695 43.963 6.594 8 75◦48′33′′ 11.000 185.776 21.583
22 87◦12′31′′ 8.133 51.658 6.969 7 74◦30′10′′ 11.000 196.776 24.365
21 87◦12′31′′ 8.596 59.791 7.365 6 72◦19′36′′ 11.000 207.776 27.415
20 87◦12′31′′ 9.086 68.387 7.784 5 68◦21′27′′ 7.000 218.776 30.919
19 87◦12′31′′ 9.603 77.473 8.227 4 65◦48′48′′ 11.000 225.776 33.697
18 86◦51′24′′ 10.000 87.076 8.696 3 65◦48′48′′ 11.000 236.776 38.637
17 85◦41′18′′ 10.000 97.076 9.245 2 65◦48′48′′ 11.000 247.776 43.578
16 85◦41′18′′ 10.500 107.076 9.999 1 65◦48′48′′ 11.000 258.776 48.519
15 84◦35′02′′ 10.500 117.576 10.790 0 – – 269.776 53.459
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An engraving by Deroy [4] published in 1889 juxtaposes the 300 m tower with thirty-four other high t
in existence at the time. The dominance of the Eiffel Towerover all structures including its nearest rival, the
masonry 169 m Washington Monument, is remarkable. Apart from the viewing platforms, Eiffel’s study at t
the summit dome and various antennae for civil and national communication, the skyline profile is determ
the location of four sets of 29 panels symmetrically placed on each side of the tower. The panels are n
from bottom to top, with heights, inclinations, and profile coordinates given in Table 1.1

In this study,x in Table 1 is taken as the downward coordinate from the top of the 29th panel andw is the
local tower half width. Note there are five sections of the tower having two or more consecutive panels o
inclination, so that the entire polygon contains only fourteen sections differently inclined. The legs of th
standing tower are supported from below by four huge caissons and the tower is held in place by fourceintures,
or structural belts, at various heights. The firstceintureis the large restaurant and viewing platform at 91 m ab
ground; the second is the mid-level viewing platform at 149 m; the third is an intermediate platform at 228
the fourth is the top viewing platform at 309 m.

3. Existing mathematical models

Clearly, any mathematical equation for the tower profile will necessarily be some approximation to i
convex polygon shape. However, that does not prevent interested persons from seeking an analytical m
might elucidate some basic physics of tower construction. Although the exterior profile is relatively smoo
elegant, the internal tower structure consists of a three-level hierarchy of iron girders, trusses and stru
many Parisians during the time of construction considered to betrès très gauche. The first approximation for an
simple model is to assume that the tower is composed of material of uniform densityρ. Lakes [5] has calculate
this material would have a densityρ = 1.2× 10−3ρ0, whereρ0 is the density of iron. We estimate this to be ab
one-tenth the density of the lightest balsa wood.

3.1. A website equation

Logging onto the Chouard’s website one finds the opening sentence [2]:
“Gustave Eiffel was proud of his good-looking Tower whose shape resulted from mathematical calculaas

he said. ‘At any height on the Tower, the moment of the weight of the higher part of the Tower, up to the
equal to the moment of the strongest wind on this same part.’ Writing the differential equation of this equilibrium
allows us to find the ‘harmonious equation’ that describes the shape of the Tower.”

This is followed by a presentation of the nonlinear integral equation

af (x)

x∫
0

f 2(t)dt = x

x∫
0

f (t)dt −
x∫

0

tf (t)dt (1)

wheref (x) is the tower half width,x the distance from the top, anda is a constant.
The derivation of Eq. (1) follows readily from the website sketch reproduced here in Fig. 2.
Fig. 2(a) shows the downward coordinatex to tower levelA, the tower half widthf (x), the weightP of the

tower above levelA, and downward coordinatet to a horizontal section of thickness dt . The tower is assumed t
be constructed of material of uniform specific weightk. The element of horizontal section in Fig. 2(b) has wei
dP(t) = 4kf 2(t)dt and is acted upon by a horizontal wind force dV (t) = 2Kf (t)dt whereK is a constant. Thu

1 The vertical heightsh and inclination angles of individual panels numberedfrom the ground up were kindly supplied by Yannick Bourse
of the Société Nouvelle d’Exploitation de la Tour Eiffel. The accumulated tower heightx and half widthw were calculated by the authors.
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Fig. 2. Schematic of gravitational and wind forces on the Eiffel Tower according to Chouard [2].

Fig. 2. Représentation schématique des forces gravitationnelles et celles dues au vent, agissant sur la Tour Eiffel, d’après Chouard [2].

element contributions to the moment about pointA are dP(t)f (x) counter-clockwise and dV (t)(x − t) clockwise.
Equating the resultant of these two moments for that part of the tower above pointA yields

f (x)

x∫
0

4kf 2(t)dt =
x∫

0

2Kf (t)(x − t)dt (2)

Defininga = 2k/K gives Eq. (1). Note the tacit assumption that the wind results in a uniform pressure ov
face of the tower, which therefore produces a force proportional to the area of that face projected on a
plane.

We now seek solutions that yield the tower profile. Substituting power law solutionAxα into Eq. (1) shows tha
it may be satisfied for proper choice ofA andα, the result being

f (x) =
√

8

15a
x1/2 (3)

This solution cannot describe the Eiffel Tower profile for the simple fact that it gives a concave shape, w
tower is convex.

Since Eq. (1) is nonlinear, other solutions may exist. We explore this possibility by analyzing the diffe
analog of the integral equation. Since the constanta may be removed by an affine transformation, we seta = 1
without loss of generality. Next, define the volume variable

y(x) =
x∫

0

f 2(t)dt (4)

and insert into Eq. (1) twicedifferentiated to obtain

2yy ′y ′′′ − yy ′′2 + 8y ′2y ′′ = 4y ′2 (5)

A series of transformations are used to try to identify a special solution. Indeed,

y ′ = y1/2g2/3(z), z = lny; g′ = v(g)

reduces (5) to the nonlinear first-order equation forv(g), namely

vv′ + 9

2
v = 3g−1/3 − 45

16
g (6)

The goal to see if a Bernoulli, Ricatti or other special nonlinear equation might appear was unsuccessful, so
suspect there is no closed form solution of (6), other thanthat given by Eq. (3) which has the incorrect curvatu
An analysis given in the Appendix shows that no solutiony(x) of the differential equation (5) corresponds to
profile functionf (x) which possesses the monotonicity and curvature properties of the actual profile of the
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An extensive investigation by the lead author, many details of which will be provided in Section 4, has fa
uncover any claim that Eiffel designed his tower based on an equilibrium of moments.

3.2. A popular model

A model often cited to explain the shape of the Eiffel Tower is predicated on a uniform compressive stres
every tower elevation. The derivation below follows the notation of Banks [6] whereiny is the vertical coordinate
from ground level,x the tower half width,A(y) the cross-sectional area of the tower,σ(y) the vertical compressiv
stress,ρ the uniform material density, andg is gravity. Wind loading is not a component of this model. A bala
of vertical forces in the free-body diagram for a horizontal section dy of the tower yields

ρgA = − d

dy
(σA) (7)

as the condition for vertical equilibrium. At this juncture Banks [6] states: “For reasons of safety, it is neces
keep the compressive stress,σ , a constant.”

Then, writing (7) as

2βA = −dA

dy
(8)

whereβ = ρg/2σ , and integrating, one obtains the vertical distribution of cross-sectional area

A = A0 e−2βy (9)

SinceA = (2x)2, the tower profile is

x = x0 e−βy (10)

wherex0 = √
A0/2 is the tower half-width at ground level.

Thus the tower is infinitely high and spraddles out exponentially from the top down. In contrast to the re
Section 3.1, this solution exhibits proper tower curvature. A least-squares fit of exponential formAeγ x to the tower
coordinates listed in Table 1 is provided in Fig. 3, with the values ofA, γ , and the coefficient of determinationR2

given in Table 2 of Section 4.1. A generalization of this analysis is given by Puig-Adam [7] who consider

Fig. 3. Least-squares exponential fit to the tower coordinates given in Table 1.

Fig. 3. L’approximation exponentielle par la méthode de moindres carrés, des coordonnées données dans le Tableau 1.
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same problem with a weight placed on top of the tower; in this case the uniform compressive stress is mainta
for an exponential profile that has finite width at the top where the weight is supported.

Although this solution gives a reasonable approximation to the tower shape, we are unable to fi
documentation showing that Eiffel & Company designed thetower to have a height-independent axial compres
stress, with or without a fixed weight at the summit.

4. A new model equation

In his autobiography, Eiffel states the problems of wind resistance had been encountered for a long tim
construction of large-scale metal structures [8]:

“In the design of these, through lack of sufficient knowledge of the complex forces exerted by the wind
builders were reduced to including intheir calculations safety coefficients which had no scientific basis.”

At that time none of the great problems concerning wind loads on a tall structure were understood [8]:
“Does the pressure increase or decrease with surface area?What is the pressure on oblique planes? Where is

center of pressure and how is it displaced?”
Further concern for the effects of wind loading is found in an interview with the French newspaperLe Tempson

14 February 1887 in which Eiffel was quoted as saying [9]:
“What is the main obstacle I had to overcome in designing the tower? Its resistance to wind. And I sub

the curves of its four piers as produced by our calculations, rising from an enormous base and narrowin
the top, will give a great impression of strength and beauty.”

So what guided Eiffel & Company in the design of the free-standing tower? How much reliance was g
their past experience in the fabrication of viaduct supports for constructing a 300 meter tower? Was the
underlying physics that gave rise to the tower profile? Answers to these questions come to light in themémoire
Eiffel communicated to the French Society of Civil Engineers on 30 March 1885 under thetitle [10]: Projet d’une
Tour en Fer de 300 Mètres de Hauteur Destinée a L’Exposition de 1889.

For three decades Eiffel & Company designed numerous bridges throughout greater Europe, in the Fre
colonies, and elsewhere. In spite of their lightweightappearance, they were known towithstand large loads an
experiments were performed to advertise their structural integrity. In an experiment carried out by Baron
on his estate at Bossancourt, a four ton single-axle cart crossed over his bridge in the presence of the
representative of the Highways Department when it was established that the maximum bridge deflect
18 mm [11].

Germane to our discussion is the fact that all pier supports for viaducts and bridges constructed b
& Company had three elements in common: (i) the sides of the supports were for the most part straig
foundation to the top; (ii) each face was composed of horizontal stiffeners for rigidity and diagonal trellis bars
resist wind load forces; and (iii) the top was affixed to a horizontal bridge or viaduct. Now for the second tim
first being the complex inner structure of the Statue of Liberty, Eiffel & Company wasfaced with the constructio
of a free-standing tower which, because of its severeheight, would have to withstand unknown wind forces.

After introductory remarks and an acknowledgement ofhis collaborators Nouguier, Koechlin and Sauves
Eiffel states in Section 1 of his communication [12]:

“If, on the contrary, we are dealing with a very high pier such as our tower, where there is no long
horizontal wind stress on the deck at the top, but only wind stress on the pier itself, things are different, a
enough, in order to eliminate the use of the trellis members,to give the uprights a curve such that the tangent
the uprights, brought to points located at the same height, always meet at the crossing point of the resulta
stress exerted by the wind on the section of the pier above the points being discussed.”

This is sufficient, along with Eiffel’s assumption that the effect of the wind may be estimated as a unifo
pressure acting on the tower, to formulate a mathematical equation for the tower profile. But what w
motivation for such a statement? The answer appears in Section 3 where Eiffel writes [13]:
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Fig. 4. (a) Original sketch of a simple truss form by Eiffel [14]; (b) our annotated sketch of thefree-body diagram showing the resultant forc
P1, P2 andP3 acting along the structural elements cut by sectionMN .

Fig. 4. L’esquisse originale (a) d’un tronçon simple, faite par Eiffel [14] ; le diagramme (avec nosannotations) montrant les forcesP1, P2 etP3
agissant sur les éléments de structure selon la coupeMN .

“I arrive now at the conditions of resistance: . . .
Let us suppose, for a moment, that now we have laid out onthe faces of a simple truss forming a resisting wall,

the shearing forces of the wind, the horizontal components of which are:

P ′,P ′′,P ′′′,P iv

One knows that in order to calculate the forces acting on the three pieces cut by the planeMN , we need to
determine the resultantP of all exterior forces acting above the section,and to decompose this resultant into th
forces passing through the cut pieces.

If the shape of the system is such that, for each horizontal cutMN , the two extended truss frames intersect
the exterior forceP , the forces in the lattice bar will be zero and we will be able to exclude this member.”

Eiffel offered no equations to confirm that the force in the cut trellis bar in Fig. 4(a) is zero, probably bec
was self-evident to the civil engineers attending the presentation. Reference to the free-body diagram in Fig. 4
readily confirms the accuracy of his statement. Forces on the structure above sectionMN are resolved into the
resultant horizontal wind forceP acting through the apex formed by the upward extension (dashed line
opposing uprights, forcesP1 and P3 acting through those members, and the forceP2 acting along the lattice
bar. The condition for rotational equilibrium is that the sum of the moments about any fixed point must va
SinceP , P1 andP3 all pass through the apex, the moment about that point has a contribution only fromP2, which
therefore must be zero. Thus Eiffel discovered a method of construction which could withstand wind loads
the aid of lattice bars. This form has the twofold benefit of reducing the tower weight and offering less surfa
to the wind. Eiffel was very proud of this fact for in Section 3 he continues [14]:

“It is the application of this principle which constitutes one of the particularities of our system, and th
believe interesting to signal to the attention of the Society.

One arrives in this manner that the direction of each of the elements of the sides will result in a curve followi
that traced on the sketch (figure 1, plate 91), and in reality the exterior curve of the tower reproduces, at a determ
scale, the same curve of the moments produced by the wind.”

The statement that the tower’s profile conforms to the moment distribution wrought by the wind was
without justification; we will return to this point shortly. For now, however, the mathematical model is deter
with the aid of Fig. 5.
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Fig. 5. Schematic of the coordinatesf (x) used for the Eiffel Tower profile showing the initial coordinatex0 and the centroid of projecte
surface areax for that part of the tower above sectionC–C.

Fig. 5. Représentation schématique des coordonnéesf (x) utilisées pour le profil de la Tour Eiffel, montrant la coordonnée initialex0 et le
barycentre de la surface projetéex pour la part de la tour au-dessus de la sectionC–C.

For a smooth skyline profile, the resultant wind forceP in Fig. 5 would act at the centroidx of the covered
surface above the tangency pointsC projected on the vertical plane normal to a horizontal wind. In one model
Section 4.1), Eiffel assumed a uniform wind would impart a uniform stress loading on the face exposed to th
We retain the notation of Section 3.1 thatf (x) is the tower half-width andx is the downward coordinate from th
uppermost panel of half widthf (x0) = 5 m. The centroid of the tower rising above sectionC–C is given by

x =
∫ x

x0
tf (t)dt∫ x

x0
f (t)dt

(11)

Eiffel’s statement that tangents atC intersect atx yields the equation

f (x) = f ′(x)(x − x) (12)

for the right tangent line in Fig. 5.
Combining (11) and (12) furnishes the nonlinear integro-differential equation

f (x)

x∫
x0

f (t)dt = f ′(x)

x∫
x0

(x − t)f (t)dt (13)

which may be considered the continuous model for the skyline profile of the Eiffel Tower that embodies
concern for wind resistance. To obtain the differential analog of (13) we introduce the area variable

y(x) =
x∫

x0

f (t)dt (14)

and differentiate (13) to obtain

f (x)y ′(x) = f ′′(x)

[
xy(x) −

x∫
x0

tf (t)dt

]
(15)

Elimination of the common integral appearing in (13) and (15) furnishes the nonlinear differential equation

yy ′′′ = y ′y ′′ (16)
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Dividing both sides byyy ′′, assuming for the momenty ′′ is everywhere nonzero, and integrating yields the sec
order linear equation

y ′′ ± γ 2y = 0 (17)

for positive constantγ .
Forγ 2 = 0 the solutiony = Ax + B yieldsf (x) = A; this constant-width solution does not satisfy the origi

integral equation (13) and is therefore discounted. The trigonometric solution for the positive sign in (17) l
f (x) = Asinψ whereψ = αx +φ; inserting this result into (13) reveals that the only solution is the trivial solu
f (x) = 0. Finally, for the positive sign in (17) one obtains the tower shapef (x) = Aeγ x + B e−γ x ; in this case it
is readily shown that the only solution of (13) is the one for whichB = 0 andx0 = −∞. Thus the only solution
satisfying the nonlinear integral differential equation, based on an analysis of its differential analogue, is

f (x) = Aeγ x (18)

The solution is consistent with the assumptiony ′′ is nonzero for all finite values ofx. Note that solution (10) is
identical to (18), but whereas the former models a tower with constant axial stress due to its weight, the la
nothing whatsoever to do with the tower weight.

Of course the tower defined by the panels is not infinitely tall; as shown in Table 2, the panels terminatex = 0
where the tower is 10 m wide. The top panel is not the true summit, however, although it does support th
ceinturethat serves as the uppermost viewing platform. A major justification for building the iron structur
that its high elevation would provide an ideal location for a meteorological laboratory to record wind speed an
direction, air temperature and humidity, and rainfall accumulation. In fact, the original design included provisio
for a comfortable room, centrally positioned on the top platform, in which Eiffel could carry out his scie
observations.

We now turn our attention to Eiffel’s statement that the tower would take the same shape, within a “dete
scale” as the moment distribution wrought by the wind. For Eiffel’s assumed uniform wind stress denoted
p0, the wind moment at locationx is given by

M(x) =
x∫

x0

(x − t)p02f (t)dt = 2p0

[
x

x∫
x0

f (t)dt −
[
t

t∫
x0

f (ξ)dξ

]x

x0

+
x∫

x0

( t∫
x0

f (ξ)dξ

)
dt

]

= 2p0

x∫
x0

t∫
x0

f (ξ)dξ dt

Table 2
ConstantsA, exponentsγ and coefficients of determinationR2 for least-squares exponential
fits of the form (18) to the entire tower and overlapping portions of the upper and lower halves

Tableau 2
Les constantesA, les exposantsγ et les coéfficients déterminantR2 pour les exponentielles
ajoustées avec les moindres carrés du type (18) à la tour dans sa totalité et pour les portions
superposées des moitiés supérieure et inférieure

Figure No. Tower Section A γ R2

Fig. 3 entire (panels 1–29) 4.2547 0.00892 0.9932
Fig. 6 upper (panels 1–13) 4.7439 0.00721 0.9978
Fig. 6 lower (panels 12–29) 2.6958 0.01117 0.9996
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where integration by parts has been used. Thus any tower shapef (t) that reproduces itself in two integrations is
candidate for Eiffel’s claim. Indeed, for the exponential profile given in Eq. (18) valid forx0 = −∞, one finds

M(x) = 2p0

γ 2 Aeγ x (19)

showing that the scale relating the wind moment distribution to the tower shape is exactly 2p0/γ
2.

4.1. Analysis of the tower shape

We have seen in Fig. 3 that an exponential fit to the tower’s skyline profile is not especially good. The
of this discrepancy lies in the liberal safety factors built into the lower part of the tower. Eiffel & Company
well aware that the wind load on a viaduct proper was much larger than on its supporting piers and, by ana
dense metalwork of the expansive first and second level observation decks would present a large resista
wind. The solution to this problem is found near the end of Section 3 of themémoirewhere Eiffel writes [15]:

“As for the intensity, we have admitted two hypotheses:the first supposes that the wind over the whole he
of the tower results in a constant force of 300 kilograms per meter squared; the other is that this intensit
from the base, where it is 200 kilograms, to the summit, where it attains 400 kilograms.

As for the exposed surfaces, we have not hesitated, in spite of its apparent exaggeration, to admit the hypothesi
that, on the upper half of the tower, the entire trellis structure was replaced by plain walls; that on the intermed
part, where the voids take on more importance, each original face was taken to be four times the surface of
iron; below (the first stage gallery and parts above the arcs), we have taken the exterior surface as unifor
finally, at the base of the tower, we have taken theuprights as uniform surfaceshit two times by the wind.

These hypotheses are more favorable compared to those that are generally adopted for viaducts.”
Clearly, the lower tower section was handled with special care, since it supports the largest wind load m

Concern for wind loads on the upper tower section was taken into account by assuming the surface to be unifor
covered, thereby taking the full force of the wind. Thisbeing the condition for our continuous model, solution (
should provide the correct upper half tower profile for fitted values ofA andγ . The caveat, of course, is that pan
19–28 are all precisely slanted to the same 87◦12′31′′. Eiffel & Company seems to have balanced simplicity
construction with aesthetics: there islittle discernable loss of beauty, in theeyes of a beholder at ground level,
viewing a section of ten uniform, steeply-inclined panels near the top.

An analysis of the linear-log plot of panel coordinates in Fig. 6(a) reveals two exponentials. The solid lin
fits of the form (18) to overlapping lower (panels1–13) and upper (panels 12–29) tower sections; the valuesA, γ ,
and coefficients of determinationR2 are given in Table 2.

The fitted curves intersect atx = 142.7 m, near the mid-point of panel 13 just above the second observ
deck. This is very close to the positionx = 140.4 m shown in figure 1 on plate 91 of Eiffel’smémoirewhere the
tower surface area first becomes exaggerated for reasons of safety.

In spite of the straight section composed of ten contiguous panels, the upper half of the tower is approx
exponential in agreement with our model. The appearance of a second exponential for the lower half of th
however, must be considered fortuitous. The agreement between fitted shapes and the actual tower co
plotted on a linear scale in Fig. 6(b) is remarkably good. We therefore cannot refrain from making the fol
observation: While events of the French Revolution are captured by Charles Dickens in his poignant noveA Tale
of Two Cities, the centennial of the French Revolution is commemorated by Eiffel’s graceful tower, the skylin
profile of which isA Tail of Two Exponentials.
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Fig. 6. Composite (a) linear-log and (b) linear-linear fits to the Tower coordinates.

Fig. 6. Les courbes ajoustées aux coordonnées de la Tour : (a) diagramme linéaire-logarithmique ; (b)diagramme linéaire-linéaire.

5. Conclusion

In conclusion, our study reveals that the tower design was not predicated on an equilibrium of mome
the constancy of axial stress. It evolved out of Eiffel’s respect for wind loading which could be reduced t
a structural design eliminating the trellis bars previously used on straight-sided piers supporting large viaduc
Indeed, Eiffel infers that his design is a product of Nature when in Section 10 of hismémoirehe states [16]
“Before they meet at such an impressive height, the uprights appear to spring out of the ground, moulded
by the action of the wind itself.”
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Appendix. A proof concerning the curvature of f (x)

Assume thatx0 ∈ [−∞,∞), f (x) > 0 and y(x) = ∫ x

x0
f (u)2 du < ∞ for all x > x0, and y satisfies the

differential equation (equivalent to (5))

y · (2y ′y ′′′ − y ′′2) = 4y ′2(1− 2y ′′) (A.1)

on the interval(x0,∞).

Theorem 1.Suppose that the half-widthf (x) of the tower monotonically increases from the top to the bottom,
is, whenx increases fromx0 to ∞. Thenf ′′ < 0 on (x0,∞), so that the functionf is everywhere concave, whic
is the shape opposite to the actual shape of the tower.
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Proof. Note thaty > 0 andy ′ = f 2 > 0 on(x0,∞). Also,y ′ = f 2 impliesf = (y ′)1/2, and so,

4f ′′ = (y ′)−3/2(2y ′y ′′′ − y ′′2) (A.2)

Comparing Eqs. (A.1) and (A.2), we see for anyx ∈ (x0,∞) that f ′′(x) < 0 if and only if y ′′(x) > 1/2, and
f ′′(x) = 0 if and only ify ′′(x) = 1/2.

We claim that, iff ′′(c) < 0 for somec ∈ (x0,∞), thenf ′′ < 0 on[c,∞). Indeed, by the just mentioned relatio
between the signs off ′′ andy ′′ − 1/2, if f ′′(c) < 0 for somec ∈ (x0,∞) theny ′′(c) > 1/2, and then it suffices to
check thaty ′′ > 1/2 on[c,∞). But otherwise there would exist somex ∈ [c,∞) such thaty ′′(x) � 1/2, whence

a := inf
{
x ∈ [c,∞): y ′′(x) � 1/2

}
< ∞

Moreover, thena � c, y ′′ > 1/2 on [c, a) and, by continuity,y ′′(a) = 1/2, so thaty ′′(x) − y ′′(a) > 0 for all
x ∈ [c, a). Also, the equalityy ′′(a) = 1/2 and the conditionsy ′′(c) > 1/2 anda � c imply a > c. Hence,

y ′′′(a) = lim
x↑a

y ′′(x) − y ′′(a)

x − a
� 0

It follows that

2y ′(a)y ′′′(a) − y ′′(a)2 � −y ′′(a)2 = −1/4 < 0

whence, by (A.1), one has 1− 2y ′′(a) < 0, which contradicts the conditiony ′′(a) = 1/2. Thus, the claim is true.
Let now

c0 := inf
{
c ∈ (x0,∞): f ′′(c) < 0

}
Then, by the above claim,f ′′ < 0 on(c0,∞). Moreover,f ′′ � 0 on(x0, c0).

Assume that Theorem 1 does not hold. Thenc0 > x0, for otherwise one would havef ′′ < 0 on (x0,∞). It
follows by (A.1) and (A.2) that on(x0, c0) one hasy ′′ � 1/2 and also 2y ′y ′′′ � y ′′2 � 0, whencey ′′′ � 0, so that
y ′′ is nondecreasing. Note also thaty ′′ = 2ff ′ � 0. Thus, there exists

β := y ′′(x0+) ∈ [0,1/2]
Moreover, it follows thatβ = 1/2 if and only if y ′′ ≡ 1/2 (and hencey ′′′ ≡ 0) in a right neighborhood (r.n.) ofx0;
but this would contradict Eq. (A.1). Hence,β ∈ [0,1/2).

Take now anyβ1 ∈ (β,1/2) and letγ := 1− 2β1, so thatγ > 0. Then, in a r.n. ofx0, one hasy ′′ � β1, whence
1− 2y ′′ � γ and, by (A.1),

2y ′y ′′′ = y ′′2 + 4
y ′2

y
(1− 2y ′′) � 4γ · y ′2

y

y ′′′ � 2γ · y ′

y
= 2γ · (lny)′

∞ > y ′′ − β � 2γ · (lny − ln(0+)
) = ∞

which is a contradiction (here we used the fact thaty(x0+) = 0).
This concludes the proof of Theorem 1.
Thus, we have proved that Eq. (1) cannot model the true shape of the Eiffel Tower.�
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