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Abstract

Model equations for the shape of the Eiffel Tower are investigated. One model purported to be based on Eiffel’s writing
does not give a tower with the correct cature. A second popular modebt connected with Eiffel'svritings provides a fair
approximation to the tower's skyline profile of 29 contiguous panels. Reported here is a third model derived from Eiffel's
concern about wind loads on the tower, as documented in his communication to the French Civil Engineering Society on
30 March 1885. The result is a nonlinear, integro-differential equation which is solved to yield an exponential tower profile. It
is further verified that, as Eiffavrote, “in reality the curve exterior of the t@w reproduces, at a determined scale, the same
curve of the moments produced by the wind”. An analysis of the actual tower profile shows that it is composed of two piecewise
continuous exponentials with different growth rates. This is explained by specific safety factors for wind loading that Eiffel &
Company incorporated in the design of the free-standing toleatite this article: P. Weidman, |. Pindlis, C. R. Mecanique
332 (2004).
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Résumé

Mise en équations du profil de la Tour Eiffel : rétrospective et nouveautéd_a mise en équation de la forme de la Tour
Eiffel est ici étudiée. Un model supposé étre basé sur les écrits d’'Eiffel abouti a une tour possédant une courbure incorrecte.
Il existe également un second model populaire, non déduit des notes d’Eiffel, produisant une bonne approximation du profile
de la tour en vingt-neuf panneaux successifs. Ici est présenté un troisieme model dérivé des préoccupations d’Eiffel concernant
les effets du vent décrits dans sa communication a la Société Francaise des Ingénieurs Civils datée du 30 mars 1885. Il en
résulte une équation non-linéaire intégro-différentielle dont la solution produit un profil de tour de type exponentiel. Il a été
par ailleurs vérifié, comme Eiffel I'a noté, «en réalité la coues&rieure de la tour reprodua une échelle déterminée, la
courbe méme des moments fléchissant dus au vent». Une analyse du profil actuel de la tour montre qu'’il est composé de deux
parties continues exponentielles a taux d’accroissement différents. Cela s’explique par des facteurs de sdreté spécifiques, liés a
la charge du vent, inclus par Eiffel & Compagnie dans le plans d’une tour auto supfRutéeiter cet article: P. Weidman,
I. Pindlis, C. R. Mecanique 332 (2004).
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1. Introduction

It is well known that the Eiffel Tower was not designadcording to a mathematical formula. It was designed
using graphical methods to construct a tower of sufficient strength to support its immense weight and empirical
results garnered from past experience to account for wind loading. This notwithstanding, the Eiffel Tower is thought
by many to be of exponential form.

The present investigation into model equations for the shape of the Eiffel Tower commenced in November
2001 when the lead author received a ctimpntary copy of the second edition éfdvanced Engineering
Mathematics[1]. On its cover are photographs of various stages of construction of the Eiffel Tower and the
frontispiece presents a nonlinear integral equation fordhvet shape, advertised as the ‘Eiffel Tower Equation’ on
a website [2] run by Christophe and Geraldine Chouard. The equation had not been solved in closed form, and the
Chouards offered a challenge to find the solution “written @smbination of usual functions” and report it to them.
Although we found one solution, it does not conform to the shape of the Eiffel Tower. Following our failure to find
any solution of the ‘Eiffel Tower Equation’ having proper tower curvature, we questioned whether the assumptions
on which the equation was formulated could be attributed to Eiffel, as claimed. Our expanded study lead to another
popular model, but neither of the two models could be traceteavritings of Eiffel. Eventually, after translating
some of Gustave Eiffel's orginal documents, we learned the basis for tower construction and developed a new
equation for the skyline profile, one that embraces E#ffdeep concern for the effects of wind loading on the
tower.

This article documents our discovery with an historicakpective. Circumstances leading to the proposition of
erecting a 300 m tower for the 1889 Exposition in Paris i&giin Section 2 along with pertinent facts about the
tower. In Section 3 two existing model equations, one linear and the other nonlinear, are reviewed and analyzed.
In Section 4 an integro-differential equation is derivealséd on a communication by Eiffel to the French Society
of Civil Engineers on 30 March 1885. The only relevant solution is exponential, justifying the lore promulgated
by both lay and scientific persons. The work in the Abstract and Sections 1-4 is due to P.D. Weidman while the
theorem in the Appendix is due to I. Pinelis.

2. Prelude and facts

In a notice published in the governmenisurnal Officielof 2 May 1886, French architects and engineers were
invited to bid on plans to construct semi-permaneiidings for the 1889 exposition and, in particular, to consider
“the possibility of erecting on the Champ de Mars an iron tower with a base of 125 meters square and 300 meters
high”, this height being the nearest round metric equiviie 1000 feet. Ultimately, Gustave Eiffel's proposal for
a tower of wrought iron weighing appximately 7000 tons, costing $1.6 mih, was selected and the contract
was signed on 18 January 1887. Eiffel & Company had already conceived and advertised the idea of constructing
a 300 meter tower beginning with an original conceptual drawing by the company’s engineers Emile Nouguier and
Maurice Koechlin in 1884 shown in Fig. 1(a); for comparison beside the tower are sketches of the Notre Dame, the
Statue of Liberty, the Arc de Triomphe, three columns the height of the column in Place Vendéme, and a six-story
apartment building. The shape and structure underwent numerous modifications by Gustave Eiffel and architect
Stéphane Sauvestre toward the final design shown in Fig. 1(b). In particular, the 40 panels exhibited in Fig. 1(a)
were pared down to the 29 panels seen in Fig. 1(b). The construction lasting two years, two months and five days
was completed on 31 Mard889 — only a month before thday 5 opening of the Exposition.
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(b)

Fig. 1. (a) Pylon 300 meters high for thiéycof Paris, 1889, a preliminary concept by MssE. Nouguier and M. Koechlin, 6 June 1884; and

(b) final design of the 300 meter tower sketched by G. Eiffel given as an attachment to the contract signed on 18 January 1887. Taken from
Heinle [3].

Fig. 1. (a) Pylone haut de 300 métres pour la Ville de Paris, concepté@immaire par Messieurs E. Nougier et M. Koechlin datant de 6 juin

1884 ; (b) Le projet final de la tour de 300 metres dessiné par G. Eiftidrné en piéce jointe au contrat signé le 18 janvier 1887. Pris dans
Heinle [3].

Table 1

Panel heights, inclinations, and pitefcoordinates derived therefrom

Tableau 1

Les hauteurs et inclinaisons de% @anneaux, ainsi que leurs cotes

Panel Angle h (m) x (m) w (m) Panel Angle h (m) x (m) w (m)
29 90*00'00” 11280 Q000 5000 14 8406'24" 10.600 128076 11786
28 87P1231 5.833 11280 5000 13 822529" 10.700 138676 12880
27 871231 6.165 17113 5284 12 822529" 11.300 149376 14303
26 871231 6.517 23278 5585 11 770752 4.900 160676 15806
25 871231 6.888 29795 5903 10 770752 10.000 165576 16925
24 871231 7.280 36683 6239 9 765410" 10.200 175576 19210
23 871231 7.695 43963 6594 8 754833’ 11.000 185776 21583
22 87P1231 8.133 51658 6969 7 743010” 11.000 196776 24365
21 871231 8.596 59791 7.365 6 721936" 11.000 207776 27415
20 871231 9.086 68387 7784 5 682127" 7.000 218776 30919
19 871231 9.603 77473 8227 4 654848’ 11.000 225776 33697
18 86°5124" 10.000 87076 8696 3 654848’ 11.000 236776 38637
17 854118’ 10.000 97076 9245 2 654848’ 11.000 247776 43578
16 854118 10.500 107076 9999 1 654848’ 11.000 258776 48519
15 843502 10.500 117576 10790 0 - - 269776 53459
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An engraving by Deroy [4] published in 1889 juxtaposes the 300 m tower with thirty-four other high towers
in existence at the time. The dominance of the Eiffel Toasgr all structures including its nearest rival, the all
masonry 169 m Washington Monument, is remarkable. Apart from the viewing platforms, Eiffel’s study at the top,
the summit dome and various antennae for civil and national communication, the skyline profile is determined by
the location of four sets of 29 panels symmetrically placed on each side of the tower. The panels are humbered
from bottom to top, with heights, inclinations, and profile coordinates given in Table 1.

In this study,x in Table 1 is taken as the downward coordinate from the top of the 29th panet anthe
local tower half width. Note there are five sections of the tower having two or more consecutive panels of equal
inclination, so that the entire polygon contains only fourteen sections differently inclined. The legs of the free-
standing tower are supported from below by four huge caissons and the tower is held in placedgjrfouwes
or structural belts, at various heights. The fasintureis the large restaurant and viewing platform at 91 m above
ground; the second is the mid-level viewing platform at 149 m; the third is an intermediate platform at 228 m, and
the fourth is the top viewing platform at 309 m.

3. Existing mathematical models

Clearly, any mathematical equation for the tower profile will necessarily be some approximation to its true
convex polygon shape. However, that does not prevent interested persons from seeking an analytical model that
might elucidate some basic physics of tower construction. Although the exterior profile is relatively smooth and
elegant, the internal tower structure consists of a three-level hierarchy of iron girders, trusses and struts which
many Parisians during the time of construction considered todsetrés gaucheThe first approximation for any
simple model is to assume that the tower is composed of material of uniform densikes [5] has calculated
this material would have a density= 1.2 x 10~3po, wherepg is the density of iron. We estimate this to be about
one-tenth the density of the lightest balsa wood.

3.1. A website equation

Logging onto the Chouard’s website one finds the opening sentence [2]:

“Gustave Eiffel was proud of his good-looking Tower whose shape resulted from mathematical calcatation,
he said ‘At any height on the Tower, the moment of the weight of the higher part of the Tower, up to the top, is
equal to the moment of the strongest wind on this same p¥riting the differential equation of this equilibrium
allows us to find the *harmonious equation’ that describes the shape of the Tower.”

This is followed by a presentation of the nonlinear integral equation

X

af (x) f fA(dr=x / fd — f tf(t)de (1)
0 0 0

where f (x) is the tower half widthx the distance from the top, amds a constant.

The derivation of Eq. (1) follows readily from the website sketch reproduced here in Fig. 2.

Fig. 2(a) shows the downward coordinateo tower levelA, the tower half widthf (x), the weightP of the
tower above level, and downward coordinateto a horizontal section of thickness.d’he tower is assumed to
be constructed of material of uniform specific weighiThe element of horizontal section in Fig. 2(b) has weight
dP(t) = 4kf?(t) dr and is acted upon by a horizontal wind forceé@) = 2K f(r) dr whereK is a constant. Thus

1 The vertical height# and inclination angles of individual panels numbefean the ground up were kindlyupplied by Yannick Bourse
of the Société Nouvelle d’Exploitation de la Tour Eiffel. The accumulated tower height half widthw were calculated by the authors.
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Fig. 2. Schematic of gravitational and wind forces on the Eiffel Tower according to Chouard [2].

Fig. 2. Représentation schématique des forces gravitationnellelbesta@es au vent, agissant sur la Tour Eiffel, d’apres Chouard [2].

element contributions to the moment about pdirdre dP (¢) f (x) counter-clockwise andWd(z)(x — r) clockwise.
Equating the resultant of these two moments for that part of the tower abovedpgieids

X

X
f(x)/4kf2(t) dt:/ZKf(t)(x—t) dr 2)
0 0
Defininga = 2k/K gives Eq. (1). Note the tacit assumption that the wind results in a uniform pressure over the
face of the tower, which therefore produces a force proportional to the area of that face projected on a vertical
plane.

We now seek solutions that yield the tower profile. Substituting power law soldtidrinto Eq. (1) shows that
it may be satisfied for proper choice afande, the result being

_ /8 ap
fx)= 150~ (3)

This solution cannot describe the Eiffel Tower profile for the simple fact that it gives a concave shape, while the
tower is convex.

Since Eq. (1) is nonlinear, other solutions may exist. We explore this possibility by analyzing the differential
analog of the integral equation. Since the constantay be removed by an affine transformation, weaset 1
without loss of generality. Next, define the volume variable

y(x) = f f2(r)de ()
0

and insert into Eq. (1) twicdifferentiated to obtain

29y'y" = yy"?+ 8%y =4y? (5)
A series of transformations are used to try to identify a special solution. Indeed,

Y =y"2%%3@), z=Iny; g =u(g)
reduces (5) to the nonlinear first-order equationf@r), namely

45
i (6)

The goal to see if a Bernoulli, Ricatti or other special livo@ar equation might appear was unsuccessful, so we
suspect there is no closed form solution of (6), other tihan given by Eq. (3) which has the incorrect curvature.
An analysis given in the Appendix shows that no solutjgn) of the differential equation (5) corresponds to a
profile functionf (x) which possesses the monotonicity and curvature properties of the actual profile of the tower.

9
v + Ev =3g71/3 —
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An extensive investigation by the lead author, many details of which will be provided in Section 4, has failed to
uncover any claim that Eiffel designed his tower based on an equilibrium of moments.

3.2. A popular model

A model often cited to explain the shape of the EiffelBy is predicated on a uniform compressive stress at
every tower elevation. The derivation below follows the notation of Banks [6] wher&rihe vertical coordinate
from ground levelyx the tower half width A (y) the cross-sectional area of the towefy) the vertical compressive
stress o the uniform material density, angis gravity. Wind loading is not a component of this model. A balance
of vertical forces in the free-body diagram for a horizontal sectipfithe tower yields

d
pgA = —E(O’A) (7)

as the condition for vertical equilibrium. At this juncture Banks [6] states: “For reasons of safety, it is necessary to
keep the compressive stress,a constant.”
Then, writing (7) as

dA
2BA=—— (8)
dy
whereg = pg/20, and integrating, one obtains the vertical distribution of cross-sectional area
A= Age 2P (9)

SinceA = (2x)?, the tower profile is
x=xpe P (10)

wherexg = +/Ag/2 is the tower half-width at ground level.

Thus the tower is infinitely high and spraddles out exponentially from the top down. In contrast to the result in
Section 3.1, this solution exhibits proper tower curvature. A least-squares fit of exponential &into the tower
coordinates listed in Table 1 is provided in Fig. 3, with the valued of , and the coefficient of determinatidt?
given in Table 2 of Section 4.1. A generalization of this analysis is given by Puig-Adam [7] who considered the

50 F

é 30 F

20

10F

0 50 100 150 200 250 300
@ (m)

Fig. 3. Least-squares exponential fit ke ttower coordinates given in Table 1.
Fig. 3. L'approximation exponentielle par la méthode dendres carrés, des coordonnées données dans le Tableau 1.
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same problem with a weight placed on top of the tower; ia gase the uniform compressive stress is maintained
for an exponential profile that has finite width at the top where the weight is supported.

Although this solution gives a reasonable approximation to the tower shape, we are unable to find any
documentation showing that Eiffel & Company designeddtiveer to have a height-independent axial compressive
stress, with or without a fixed weight at the summit.

4. A new model equation

In his autobiography, Eiffel states the problems of wind resistance had been encountered for a long time in the
construction of large-scale metal structures [8]:

“In the design of these, through lack of sufficient knowledge of the complex forces exerted by the wind, their
builders were reduced to includingtineir calculations safety coefficients which had no scientific basis.”

At that time none of the great problems concerning wind loads on a tall structure were understood [8]:

“Does the pressure increase or decrease with surface\Afieatds the pressure on oblique planes? Where is the
center of pressure and how is it displaced?”

Further concern for the effects of wind loading is found in an interview with the French newdpapemp®n
14 February 1887 in which Eiffel was quoted as saying [9]:

“What is the main obstacle | had to overcome in designing the tower? Its resistance to wind. And | submit that
the curves of its four piers as produced by our calculations, rising from an enormous base and narrowing toward
the top, will give a great impression of strength and beauty.”

So what guided Eiffel & Company in the design of the free-standing tower? How much reliance was given to
their past experience in the fabrication of viaduct supports for constructing a 300 meter tower? Was there some
underlying physics that gave rise to the tower profile? Answers to these questions come to lighhéntbee
Eiffel communicated to the French Society of/iCEngineers on 30 Mah 1885 under thétle [10]: Projet d’'une
Tour en Fer de 300 Métres de Hauteur Destinée a L'Exposition de.1889

For three decades Eiffel & Company designed nwusrbridges throughout greater Europe, in the French
colonies, and elsewhere. In spite of their lightweighpearance, they were knownwidthstand large loads and
experiments were performed to advertise their structural integrity. In an experiment carried out by Baron Saladin
on his estate at Bossancourt, a four ton single-axle cart crossed over his bridge in the presence of the regional
representative of the Highways Department when it was established that the maximum bridge deflection was
18 mm [11].

Germane to our discussion is the fact that all pier supports for viaducts and bridges constructed by Eiffel
& Company had three elements in common: (i) the sides of the supports were for the most part straight from
foundation to the top; (ii) each face was composed of horaatiffeners for rigidity and diagonal trellis bars to
resist wind load forces; and (iii) the top was affixed to a horizontal bridge or viaduct. Now for the second time, the
first being the complex inner structure of the Statue ibkkty, Eiffel & Company wadaced with the construction
of a free-standing tower which, because of its seleight, would have to withstand unknown wind forces.

After introductory remarks and an acknowledgementisfcollaborators Nouguier, Koechlin and Sauvestre,
Eiffel states in Section 1 of his communication [12]:

“If, on the contrary, we are dealing with a very high pier such as our tower, where there is no longer any
horizontal wind stress on the deck at the top, but only wind stress on the pier itself, things are different, and it is
enough, in order to eliminate the use of the trellis membergive the uprights a curve such that the tangents to
the uprights, brought to points located at the same height, always meet at the crossing point of the resultant of the
stress exerted by the wind on the section of the pier above the points being discussed.”

This is sufficient, along with Eiffel's assumption ththe effect of the wind may be estimated as a uniform
pressure acting on the tower, to formulate a mathematical equation for the tower profile. But what was the
motivation for such a statement? The answer appears in Section 3 where Eiffel writes [13]:
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@) %

Fig. 4. (a) Original sketch of a simple trussrioby Eiffel [14]; (b) our annotated sketch of tfree-body diagram showing the resultant forces
P1, P> and P3 acting along the structural elements cut by secfibN .

Fig. 4. L'esquisse originale (a) d'un trongon simple, faite pafefE[fl4] ; le diagramme (avec n@notations) montrant les forc®s, P et P3
agissant sur les éléments de structure selon la coiie

“I arrive now at the conditions of resistance: . ..
Let us suppose, for a moment, that now we have laid otherfaces of a simple trussrfaing a resisting wall,
the shearing forces of the wind, the horizontal components of which are:

p’ . p" p"” Piv

One knows that in order to calculate thedes acting on the three pieces cut by the plah®, we need to
determine the resultart of all exterior forces acting above the sectiand to decompose this resultant into three
forces passing through the cut pieces.

If the shape of the system is such that, for each horizontal&dt the two extended truss frames intersect on
the exterior forceP, the forces in the lattice bar will be zero and we will be able to exclude this member.”

Eiffel offered no equations to confirm that the force in the cut trellis bar in Fig. 4(a) is zero, probably because it
was self-evident to the civil engineers attending the priegimn. Reference to the free-body diagram in Fig. 4(b)
readily confirms the accuracy of his staterhd~orces on the structure above sectddiV are resolved into the
resultant horizontal wind forcé acting through the apex formed by the upward extension (dashed lines) of
opposing uprights, force®; and P3 acting through those members, and the fofeeacting along the lattice
bar. The condition for rotational equiliium is that the sum of the moments about any fixed point must vanish.
SinceP, P; and P all pass through the apex, the moment about that point has a contribution only4ravhich
therefore must be zero. Thus Eiffel discovered a method of construction which could withstand wind loads without
the aid of lattice bars. This form has the twofold benefit of reducing the tower weight and offering less surface area
to the wind. Eiffel was very proud of this fact for in Section 3 he continues [14]:

“It is the application of this principle which constitutes one of the particularities of our system, and that we
believe interesting to signal to the attention of the Society.

One arrives in this manner that the direction of each efdlements of the sides will result in a curve following
that traced on the sketch (figure 1, plate 91), and in real@etterior curve of the tower reproduces, at a determined
scale, the same curve of the moments produced by the wind.”

The statement that the tower’s profile conforms to the moment distribution wrought by the wind was given
without justification; we will return to this point shortly. For now, however, the mathematical model is determined
with the aid of Fig. 5.
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f(z)

Fig. 5. Schematic of the coordinatggx) used for the Eiffel Tower profile showing the initial coordinaig and the centroid of projected
surface area for that part of the tower above secti6h-C.

Fig. 5. Représentation schématique des coordonyiées utilisées pour le profil de la Tour Eiffel, montrant la coordonnée initigjeet le
barycentre de la surface projeté@our la part de la tour au-dessus de la sectieit .

For a smooth skyline profile, the resultant wind foren Fig. 5 would act at the centroid of the covered
surface above the tangency poigtprojected on the vertical plane normal to a horizontal wind. In one model (see
Section 4.1), Eiffel assumed a uniform wind would impart a uniform stress loading on the face exposed to the wind.
We retain the notation of Section 3.1 thétx) is the tower half-width and is the downward coordinate from the
uppermost panel of half widtli(xg) =5 m. The centroid of the tower rising above sect®#rC is given by

T f@)de
= /;‘37 (11)
Jo f@de
Eiffel's statement that tangents@tintersect af yields the equation
f) =) —% (12)
for the right tangent line in Fig. 5.
Combining (11) and (12) furnishes the nonlinear integro-differential equation
f(x)/f(t)dt=f/(x)/(x -0 f@)dt (13)
X0 X0

which may be considered the continuous model for the skyline profile of the Eiffel Tower that embodies Eiffel’s
concern for wind resistance. To obtain the differential analog of (13) we introduce the area variable

o) = / Fyd (14)
x0

and differentiate (13) to obtain

X
F)Y' )= f"x) [xy(x) - f 1f () dt] (15)
X0
Elimination of the common integral appearing in (13) and (15) furnishes the nonlinear differential equation

" awZ

wh=yy (16)
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Dividing both sides byy”, assuming for the moment is everywhere nonzero, and integrating yields the second-
order linear equation

y' £y2%y=0 (17)

for positive constang.

Fory2 = 0 the solutiony = Ax + B yields f(x) = A; this constant-width solution does not satisfy the original
integral equation (13) and is therefore discounted. The trigonometric solution for the positive sign in (17) leads to
f(x) = Asiny whereyr = ax + ¢; inserting this result into (13) reveals that the only solution is the trivial solution
f(x) =0. Finally, for the positive sign in (17) one obtains the tower shape = A e’* 4+ Be~V~; in this case it
is readily shown that the only solution of (13) is the one for whi&k=- 0 andxp = —oo. Thus the only solution
satisfying the nonlinear integral differential equation, based on an analysis of its differential analogue, is

fx)=Ae?* (18)

The solution is consistent with the assumptighis nonzero for all finite values of. Note that solution (10) is
identical to (18), but whereas the former models a tower with constant axial stress due to its weight, the latter has
nothing whatsoever to do with the tower weight.

Of course the tower defined by the panels is not infinitely tall; as shown in Table 2, the panels terminat@ at
where the tower is 10 m wide. The top panel is not the true summit, however, although it does support the fourth
ceinturethat serves as the uppermost viewing platform. A major justification for building the iron structure was
that its high elevation would provide an ideal locatiam & meteorological laboraty to record wind speed and
direction, air temperature and humidity, and rainfall anatation. In fact, the origial design included provision
for a comfortable room, centrally positioned on the top platform, in which Eiffel could carry out his scientific
observations.

We now turn our attention to Eiffel's statement that the tower would take the same shape, within a “determined
scale” as the moment distribution wrought by the wind. For Eiffel’s assumed uniform wind stress denoted here as
po, the wind moment at locationis given by

M(x) = / (x—t)p02f(t)dt=2po[x / £y di - {r / f(é)d%‘} 4 / ( / f(é)d$> dr]
X0 X0 X0 o X0

X0
X t
~2po / / FE)dedi

X0 X0

Table 2

ConstantsA, exponentsy and coefficients of determinatioR? for least-squares exponential
fits of the form (18) to the entire tower and olapping portions of the upper and lower halves
Tableau 2

Les constantes\, les exposanty et les coéfficients détermina? pour les exponentielles
ajoustées avec les moindres carrés du ty@ & la tour dans sa totalité et pour les portions
superposées des moitiés supérieure et inférieure

Figure No. Tower Section A y R?
Fig. 3 entire (panels 1-29) 4.2547 0.00892 0.9932
Fig. 6 upper (panels 1-13) 4.7439 0.00721 0.9978

Fig. 6 lower (panels 12—29) 2.6958 0.01117 0.9996
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where integration by parts has been used. Thus any tower ghii@pthat reproduces itself in two integrations is a
candidate for Eiffel's claim. Indeed, for the exponential profile given in Eq. (18) validdet —oo, one finds

M(x) = 2—”20,4 N2 (19)
y

showing that the scale relating the wind moment distribution to the tower shape is exagtjy?2

4.1. Analysis of the tower shape

We have seen in Fig. 3 that an exponential fit to the tower’s skyline profile is not especially good. The origin
of this discrepancy lies in the liberal safety factors built into the lower part of the tower. Eiffel & Company were
well aware that the wind load on a viaduct proper was much larger than on its supporting piers and, by analogy, the
dense metalwork of the expansive first and second level observation decks would present a large resistance to the
wind. The solution to this problem is found near the end of Section 3 ahtraoirewhere Eiffel writes [15]:

“As for the intensity, we have admitted two hypothedés: first supposes that the wind over the whole height
of the tower results in a constant force of 300 kilograms per meter squared; the other is that this intensity grows
from the base, where it is 200 kilograms, to the summit, where it attains 400 kilograms.

As for the exposed surfaces, we have not hesitated jti@ spits apparent exaggeian, to admit the hypothesis
that, on the upper half of the tower, the entire trellis smuetwas replaced by plain walls; that on the intermediate
part, where the voids take on more importance, eachlimaiidace was taken to be four times the surface of real
iron; below (the first stage gallery and parts above the arcs), we have taken the exterior surface as uniform walls;
finally, at the base of the tower, we have takenupgghts as uniform surfacdst two times by the wind.

These hypotheses are more favorable compar#tbise that are generally adopted for viaducts.”

Clearly, the lower tower section was handled with special care, since it supports the largest wind load moments.
Concern for wind loads on the upper tower section wkertanto account by assuming the surface to be uniformly
covered, thereby taking the full force of the wind. Thisng the condition for our continuous model, solution (18)
should provide the correct upper half tower profile for fitted values ahdy . The caveat, of course, is that panels
19-28 are all precisely slanted to the samel2B1’. Eiffel & Company seems to have balanced simplicity of
construction with aesthetics: therdliitle discernable loss of beauty, in tieges of a beholder at ground level, in
viewing a section of ten uniform, steeply-inclined panels near the top.

An analysis of the linear-log plot of panel coordinates in Fig. 6(a) reveals two exponentials. The solid lines are
fits of the form (18) to overlapping lower (pandls13) and upper (panels 12—29) tower sections; the vaues
and coefficients of determinatidk? are given in Table 2.

The fitted curves intersect at= 1427 m, near the mid-point of panel 13 just above the second observation
deck. This is very close to the positian= 1404 m shown in figure 1 on plate 91 of Eiffellsémoirewhere the
tower surface area first becomes exaggerated for reasons of safety.

In spite of the straight section composed of ten contiguous panels, the upper half of the tower is approximately
exponential in agreement with our model. The appearance of a second exponential for the lower half of the tower,
however, must be considered fortuitous. The agreement between fitted shapes and the actual tower coordinates
plotted on a linear scale in Fig. 6(b) is remarkably good. We therefore cannot refrain from making the following
observation: While events of the French Revolution are captured by Charles Dickens in his poignaAt Tedeel
of Two Cities the centennial of the French Revolution is comnmogated by Eiffel’'s graceful tower, the skyline
profile of which isA Tail of Two Exponentials
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I0 5‘0 1‘00 1‘50 260 2‘50 300 I0 5‘0 1‘00 1‘50 260 2‘50 300
z (m) z (m)
Fig. 6. Composite (a) linear-log and (b) linear-linear fits to the Tower coordinates.
Fig. 6. Les courbes ajoustées aux coordonnées de la Tour : (ajudiax linéaire-logarithmique ; (ljagramme linéaire-linéaire.

5. Conclusion

In conclusion, our study reveals that the tower design was not predicated on an equilibrium of moments nor
the constancy of axial stress. It evolved out of Eiffel’s respect for wind loading which could be reduced through
a structural design elimiiag the trellis bars previously used on $fat-sided piers supporting large viaducts.
Indeed, Eiffel infers that his design is a product of Nature when in Section 10 ohéMsoirehe states [16]:

“Before they meet at such an impressive height, the uprights appear to spring out of the ground, moulded in a way
by the action of the wind itself.”
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Appendix. A proof concerning the curvature of f(x)

Assume thatxg € [—00,00), f(x) > 0 andy(x) = fx);f(u)zdu < oo for all x > xg, and y satisfies the
differential equation (equivalent to (5))

y - (zy/y/// _ y//2) — 4y/2(1 _ 2y”) (Al)
on the intervalxg, 00).
Theorem 1.Suppose that the half-widif(x) of the tower monotonically increases from the top to the bottom, that

is, whenx increases from to co. Thenf” < 0 on (xg, 00), so that the functiory is everywhere concave, which
is the shape opposite to the actual shape of the tower.



P. Weidman, I. Pinelis / C. R. Mecanique 332 (2004) 571-584 583

Proof. Note thaty > 0 andy’ = 2 > 0 on(xp, o). Also, y = f2 implies f = (y")1/2, and so,
4f// — (y/)73/2(2y/y/// _ y//Z) (A.Z)

Comparing Egs. (A.1) and (A.2), we see for any (xo, o0) that f”(x) < 0 if and only if y"(x) > 1/2, and
f"(x)=0ifand only ify”(x) = 1/2.

We claim that, if /" (c) < 0 for somec € (xg, 00), then f” < 0 on[c, 00). Indeed, by the just mentioned relation
between the signs of” andy” — 1/2, if f”(c) < 0 for somec € (xg, o0) theny”(c) > 1/2, and then it suffices to
check thaty” > 1/2 on[c, o0). But otherwise there would exist some= [¢, 0o) such thaty” (x) < 1/2, whence

a:=inf{x € [c, 00): y"(x) <1/2} <00
Moreover, theru > ¢, y” > 1/2 on|[c, a) and, by continuity,y”(a) = 1/2, so thaty”(x) — y”(a) > 0 for all
x € [c,a). Also, the equalityy” (a) = 1/2 and the conditiong”(c) > 1/2 anda > ¢ imply a > ¢. Hence,

im 20—y @

" (@) =] 0
y'(a) im

X —da
It follows that
2y'(a)y"(a) — y"(@)? < —y"(a)?=-1/4<0

whence, by (A.1), one has-12y”(a) < 0, which contradicts the conditioff’ (a) = 1/2. Thus, the claim is true.
Let now

co :=inf{c € (xo,00): f”(c) <0}

Then, by the above clainy,” < 0 on(cg, c0). Moreover,f” > 0 on (xg, co).

Assume that Theorem 1 does not hold. Then- xq, for otherwise one would havé” < 0 on (xg, 00). It
follows by (A.1) and (A.2) that orixo, co) one hasy” < 1/2 and also 2’y > y”2 > 0, whencey”” > 0, so that
y” is nondecreasing. Note also thdt=2ff’ > 0. Thus, there exists

B :=y"(xo+) €10,1/2]

Moreover, it follows thafg = 1/2 if and only if y” = 1/2 (and hence’’ = 0) in a right neighborhood (r.n.) af;
but this would contradict Eq. (A.1). Hencg e [0, 1/2).
Take now anyB; € (8, 1/2) and lety := 1 — 284, so thaty > 0. Then, in a r.n. oko, one has” < 81, whence
1-2y” >y and, by (A.1),
12 12
2y/y/// _ y//z +4y_(1_ 2y//) >4y y-
y y
!/
y'=2y- y; =2y - (Iny)y
00>y —B=2y (Iny—In(0+)) =00
which is a contradiction (here we used the fact thab+) = 0).
This concludes the proof of Theorem 1.
Thus, we have proved that Eqg. (1) cannot model the true shape of the Eiffel Tower.
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